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Abstract. Equilibrium states of large layered neural networks with differentiable activation function and
a single, linear output unit are investigated using the replica formalism. The quenched free energy of a
student network with a very large number of hidden units learning a rule of perfectly matching complexity is
calculated analytically. The system undergoes a first order phase transition from unspecialized to specialized
student configurations at a critical size of the training set. Computer simulations of learning by stochastic
gradient descent from a fixed training set demonstrate that the equilibrium results describe quantitatively
the plateau states which occur in practical training procedures at sufficiently small but finite learning rates.
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Methods from statistical physics have been applied with
great success within the theory of learning in adaptive
systems. One prominent example is the investigation of
feedforward neural networks which are capable of learning
an unknown rule from example data [1,2]. Frequently, the
training procedure, i.e. the choice of network parameters
(weights), is based on an energy function which measures
the agreement of the student network with the rule in
terms of the given example outputs. Statistical mechanics
techniques can be applied if training is interpreted as a
stochastic process which leads to a properly defined ther-
mal equilibrium [3–5]. A particularly interesting topic is
that of phase transitions in this context, see [6] for a re-
cent review. In multilayered neural networks, for example,
underlying symmetries can cause a discontinuous depen-
dence of the success of learning on the size of the training
set, see e.g. [7–12].

In this paper we present the first treatment of learn-
ing in fully connected soft–committee machines by means
of the replica method. This type of network consists of a
layer with K hidden units, all of which are connected with
the entire input, and the total output of the net is pro-
portional to the sum of their states. Previous studies have
addressed large soft committees (K → ∞) with binary
weights within the so–called Annealed Approximation [7]
or networks with finite K in the limit of high training
temperature [13].

Here, analytical results for the learning of a perfectly
realizable rule at arbitrary training temperatures are
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derived (for very large K) within a replica symmetric
ansatz. With an increasing size of the training set, the
model exhibits a first order transition from unspecialized
student configurations to specialized states with better
performance. This transition is due to the invariance of
the soft–committee output under permutation of hidden
units. The same symmetry is known to result in quasi–
stationary plateaus of the learning dynamics in on–line
learning from a sequence of independent training examples
[14–18], see [19] for a recent overview of this framework.
Here, on the contrary, we will consider off–line learning
from a fixed, limited set of examples. Furthermore we
demonstrate that the statistical physics results, if inter-
preted correctly, describe the behavior of practical learn-
ing prescriptions. To this end we compare our results with
the outcome of a stochastic variant of the well–known
backpropagation of error algorithm [1,2,20].

We investigate a student–teacher scenario where the
rule is parametrized as

τ(ξ) =
1
√
K

K∑
j=1

g(yj) with yj =
1
√
N

Bj · ξ. (1)

We assume an isotropic teacher with orthonormal weight
vectors: Bj · Bk = Nδjk for all j, k. The training
of a perfectly matching student with outputs σ(ξ) =∑K
j=1 g(xj)/

√
K is considered, where the arguments xj =

Jj · ξ/
√
N are defined through adaptive weights Jj

with J2
j = N . The particular choice of the hidden

unit activation function, g(x) = erf(x/
√

2), simplifies
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the mathematical treatment to a large extent [13–15]. We
expect, however, that our results apply qualitatively to a
large class of sigmoidal functions including the very simi-
lar and frequently used hyperbolic tangent.

Learning is guided by the minimization of the training
error

εt =
1

P
H
({

Jj
})

=
1

P

P∑
µ=1

ε
(
{Ji} , ξ

µ
)

=
1

P

P∑
µ=1

1

2

(
σ(ξµ)− τ(ξµ)

)2
(2)

where P is the number of training examples, which we
assume to scale like P = αNK with α = O(1). The
extensive quantity H = Pεt plays the role of an en-
ergy. The replica formalism for the calculation of the
corresponding quenched free energy exploits the identity
〈lnZ〉 = ∂ 〈Zn〉/ ∂n|n=0 where 〈. . . 〉 denotes an average
over the set of random training examples. Zn is equiva-
lent to the partition function of n non-interacting copies
(labeled a = 1, 2, . . . , n) of the investigated system and
reads:

Zn =

∫
dµ({Jai })

P∏
µ=1

exp

[
−
β

2

n∑
a=1

(
σa
(
ξµ
)
− τ

(
ξµ
))2]

.

(3)

Here, the measure dµ is meant to incorporate the nor-
malization Ja2

j = N of the student vectors. We perform
the quenched average over all possible sets of independent
training inputs ξµ, the components of which are assumed
to be i.i.d. Gaussian random numbers with mean zero and
unit variance. One obtains the following form:

〈Zn〉 =

∫
dµ({Jai })e

−PGr

where

Gr = − ln

〈
exp

[
−
β

2

n∑
a=1

(
σa(ξ)− τ(ξ)

)2]〉
ξ

. (4)

Here and in the following 〈. . . 〉ξ denotes an average over
the randomness contained in a single input vector. As the
examples are independent, the quenched average over the
training set factorizes.

The sample average Gr will only depend on the order
parametersRaij = Jai ·Bj/N andQabij = Jai ·J

b
j/N . Similarly

the generalization error εg = 1
2 〈(σ−τ)2〉ξ, which measures

the success of learning by averaging over arbitrary inputs
is given by [15]

εg =
1

6
+

1

Kπ

K∑
i,j=1

[
arcsin

(
Qaaij

2

)
− 2arcsin

(
Raij

2

)]
.

(5)

In this paper we restrict ourselves to networks with a very
large number K of hidden units. Non-trivial results can

be obtained in the limit K → ∞ but with K � N by
assuming that the relevant student configurations will be
site symmetric:

Raij =

{
Ra if i = j

Sa if i 6= j
, Qaaij =

{
1 if i = j

Ca if i 6= j
,

and Qabij =

{
qab if i = j

pab if i 6= j
for a 6= b. (6)

Here and elsewhere in the paper superscripts a, b label
replicas, whereas i and j are hidden unit indices. The re-
striction (6) allows the system to assume unspecialized
(Ra = Sa) or specialized states (Ra > Sa). Note that the

output of a student will be O(
√
K) and thus on a differ-

ent scale than the output of the teacher if Ca is on the
order of 1. So that the magnitudes of the outputs match,
we assume that the hidden unit cross overlaps (Ca, pab

and Sa) are on the order of 1/K. As a consequence of this
scaling one may show [12] that the joint distribution of τ
and the σa becomes Gaussian in the large K limit.

In the following we use the notation σ =(
σ1, σ2, . . . , σn, τ

)>
, and define a matrix B such that

σ>Bσ =
∑n
a=1 (σa − τ)2. For large K the Gaussian joint

distribution of σ is completely specified through the co-
variance matrix M =

〈
σσ>

〉
, the elements of which can be

expressed in terms of order parameters. Hence one obtains
the effective Hamiltonian Gr, equation (4),

Gr =−ln

{
(2π)

−n−1
2

√
det M

∫
dn+1σ exp

[
−

1

2
σ>
(
βB+M−1

)
σ

]}

=
1

2
ln {det [βMB + 1]} (7)

where the r.h.s. is a function of the site symmet-
ric order parameters (6). A saddle point integration
gives 1/N ln 〈Zn〉 as the extremum (w.r.t.

{
Rakl, Q

ab
kl

}
) of

exp[−PGr +Ns] where

s =
1

N
ln

∫
dµ({Jai })

K∏
k,l=1

n∏
a,b=1

δ(Qabkl −NJak · J
b
l )

× δ(Rakl −NJak ·Bl). (8)

The entropy term can be calculated by means of a sad-
dle point integration itself after writing the δ-functions in
their integral representation. One obtains

s = 1/2 ln(det C) + const., (9)

where C is the [(n+1)K]-dimensional square matrix of all
cross- and self-overlaps of (replicated) student and teacher
vectors [9,12]. In the Appendix we sketch a simpler deriva-
tion of this result which avoids the saddle point method.

In order to proceed with the analysis, we make a replica
symmetric ansatz, in addition to site symmetry (6): Ra=
R,Sa = S,Ca = C and qab = q, pab = p for a 6= b. This
assumption simplifies the evaluation of the determinants
and allows for a straightforward treatment of the limit
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Fig. 1. Generalization error and training error as functions of α = P/(KN). Left panel: εg vs. α for three different training
temperatures in the Gibbs ensemble. For each temperature, the leftmost dashed line indicates the occurrence of a locally stable
specialized state; the second vertical line marks αglob where it becomes globally stable. Right panel: εt vs. α for β = 100. An
additional (first order) transition occurs at which εt begins to increase in the unspecialized solution while εg remains constant.
For α→∞ the training error approaches the value εt = εg = 1/3− 1/π.

n → 0. In agreement with the scaling of the hidden unit

cross overlaps, we reparametrize: S = Ŝ/K, C = Ĉ/(K −
1), and p = p̂/K. The parameters ∆ = R−S and δ = q−p
now measure the degree of specialization in the network.
Inserting these in the saddle point equations we find that

the condition ∂f/∂Ŝ = 0 can only be satisfied, if C̃ =

K(1+ Ĉ−δ− p̂) = O(1). After eliminating Ĉ accordingly,
we obtain the free energy as a function of variables of order
one:

2βF

NK
= α

[
β(v− 2w+1/3)

1+β(u−v)
+ ln [1+β(u−v)]

]
+
δ−∆2

δ−1

− ln(1−δ)−
δ+p̂−(∆+Ŝ)2

C̃
, (10)

with u = 1/3 + Ĉ/π, v = [2arcsin(δ/2) + p̂]/π, and w =

[2arcsin(∆/2) + Ŝ]/π. Terms of order (1/K) have been
neglected on the r.h.s. of equation (10).

For α = O(1), the saddle point equations yield two
different types of solution: an unspecialized, committee
symmetric branch with ∆ = δ = 0 and specialized solu-

tions with ∆, δ > 0. In the first case we find p̂ = Ŝ = 1

and Ĉ = 0, with the generalization error εg = 1/3− 1/π
independent of both α and β. In the specialized case we

get Ĉ = 0, p̂ = 1 − δ and Ŝ = 1 − ∆, while δ and ∆ as
functions of α and β can be determined only numerically.

Figure 1 (left) shows the generalization error as a func-
tion of α for three different values of β. The system un-
dergoes a first order phase transition from a committee
symmetric state (R = S) to a specialized solution with
R > S. At constant training temperature, a locally sta-
ble, specialized configuration appears at a (β–dependent)
value αmin. For α > αglob(β), the specialized solution be-
comes globally stable. Asymptotically, the corresponding
generalization error εg and the training error εt decay like
1/(αβ) for large α. In contrast to the unspecialized phase,
at a given α the generalization error always decreases with
increasing β in the specialized phase.

It is important to note that an unspecialized config-
uration with constant εg remains locally stable for all α.
For a given β the corresponding training error is constant
with respect to the size of the training set, initially. At an
additional critical value of α, the order parameter δ = q−p
which measure correlations between students in different
replicas assumes a non-zero value, whereas in this phase
∆ = R − S remains zero for all α. This transition does
not affect the generalization error but it does cause a first
order transition to a slightly higher value of the train-
ing error εt. The training error continues to increase and
approaches its asymptotic value 1/3 − 1/π while δ → 1
for α → ∞. The latter indicates that, asymptotically, a
unique set of unspecialized student weights is chosen in all
replicas. Due to the transition , the training and general-
ization error of the unspecialized configuration coincide in
the limit α→∞.

Figure 1 (right) displays εt(α) for β = 100, where the
above mentioned phase transition is located at α ≈ 6.18
where the training error jumps to a slightly larger value.
The transition within the unspecialized phase occurs at
values of α which increase rapidly with the training tem-
perature, for instance at α ≈ 139 for β = 10 and α ≈ 489
for β = 5.

Our results parallel the findings of [8,9,12] for large
multilayer networks with threshold activation functions.
We have found essentially the same qualitative behavior
in the limit of infinite training temperature [13] and by ap-
plying the Annealed Approximation. However, the transi-
tion within the unspecialized phase cannot be identified in
these simpler frameworks. It is further quite possible that
even the replica symmetric decription of this transition
is incomplete. For threshold activation functions it was
observed in [12] that this transition is affected by replica
symmetry breaking, resulting in a lower critical value for α
than predicted in replica symmetry and changing the na-
ture of the transition from first to second order. A more
detailed discussion of this transition for the present case
will be given elsewhere [21].
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The limit β →∞ is of particular interest and corre-
sponds to potentially error free training with εt = 0 for all
α. Within our replica symmetric ansatz we find for β →∞
that the system switches from poor to perfect generaliza-
tion (εg = 0) at αmin = αglob = 1, where the number of
examples coincides with the number of adjustable weights
in the network. This is a consequence of the smooth, dif-
ferentiable nature of the input–output relation in this type
of network. Such a transition to εg = 0 is not observed in
networks with threshold activation functions and contin-
uous weights. The achievement of perfect generalization
observed in networks with binary weights is due to a com-
pletely different mechanism, i.e. a freezing transition in
the discrete configuration space, see e.g. [4,5,8].

It is of course a crucial question, whether our statistical
mechanics treatment can give relevant results for practi-
cal applications. We have followed the standard approach
and analysed a heat bath ensemble, i.e. a Gibbs distribu-
tion of network configurations. One might reproduce the
Gibbs density in simulations of the learning process by
use of an appropriate Langevin or Monte Carlo dynam-
ics. However, these prescriptions are out of the question
for practical applications in the case of continuous weights
and differentiable outputs. Much faster and more effective
methods exist, the most prominent one is certainly the
so–called backpropagation of error [1,2,20].

When can we expect the statistical physics results to
be relevant for such a practical prescription? Under cer-
tain restricting assumptions one can show, for instance,
that stochastic gradient descent produces a stationary dis-
tribution which approximates a Gibbs density in the limit
of infinitesimally small learning rates. This has been inves-
tigated in detail for simple systems in the vicinity of local
energy minima [22–24]. But heat bath results can be inter-
preted in a broader context. Whenever an algorithm yields
network configurations with a probability which depends
exclusively on the training energy, one could in princi-
ple analyse an appropriate ensemble. All such ensembles,
including the heat bath, refer to the same microcanoni-
cal density. Hence, for fixed energy, the system chooses
among the same set of possible states with equal proba-
bility and the same macroscopic features emerge. Stability
properties, however, will depend strongly on the consid-
ered ensemble which has to be specified in order to locate
a phase transition, for instance.

In Figure 2 (left panel) we have plotted the generaliza-
tion error vs. the corresponding training error at α = 5 by
eliminating β in all saddle point solutions (regardless their
local or global stability). Clearly, this dependence could be
derived from the microcanonical density as well. Accord-
ing to the above reasoning, the same graph is valid for
all procedures which produce configurations with a purely
energy dependent probability.

In the following we demonstrate that the backpropa-
gation algorithm appears to fulfill this requirement very
well for a range of learning rates. To this end we have
performed simulations of a stochastic version [2] with

updates

Jt+1
i =

√
N
(
Jti − η∇Ji

ε({Jti}, ξ
µ(t))

)∣∣Jti − η∇Ji
ε({Jti}, ξ

µ(t))
∣∣ · (11)

The current training example
{
ξµ(t), τµ

}
is drawn ran-

domly from the pool of P = αKN independent input-
output pairs with probability 1/P at each time step. The
learning rate η controls the step size of this stochastic
gradient descent and the weights are normalized explicitly.
The number of hidden units was K = 10 in all simulations
shown in Figure 2.

In the course of learning one observes quasi–stationary
states in which both εt and εg remain almost constant
over a large number of updates. These are reminiscent of
the plateaus found in on–line training of soft–committees
[14–16] where each example is presented exactly once. We
have identified plateaus according to a heuristic criterion
in our simulations and determined the corresponding val-
ues of εg and εt. Note that several such states can be
approached successively while learning with a fixed rate
η. Details of the simulations will be explained in a forth-
coming publication [21].

Figure 2 (left) shows the observed pairs of values
(εg, εt) for learning rates 0.1 ≤ η ≤ 4.0. Simulation re-
sults are in good agreement with the theoretical analysis
for a range of finite η. The algorithm favors configurations
from either one of the two predicted phases, the occurrence
of states in between the specialized and the unspecialized
branch is presumably due to the finite size of the system.
The data with εg significantly larger than predicted cor-
respond to plateaus found in simulations with relatively
large η. Figure 2 (right panel) displays the observed values
of εg vs. η. For small enough learning rates the predicted
competition of specialized and unspecialized states is con-
firmed. For η>̃2, the value of εg can deviate significantly
from the prediction, its sudden increase at η ≈ 5 is remi-
niscent of the presence of a critical learning rate in on–line
learning from a sequence of uncorrelated examples [14,15].

As argued above, the location of a sharp transition
from poor to good generalization cannot be expected to
carry over from the heat bath to backpropagation results.
We could not establish a relation between the control pa-
rameters β and η since the specific density of plateau
states as produced by the training algorithm is unknown.
Our simulations support, however, the assumption that
it is purely energy dependent for reasonable η. The cal-
culation of student–student overlaps provides further ev-
idence for this hypothesis: we find the predicted scaling
C ∝ 1/K2 for small learning rates, whereas C = O(1)
independent of K for large η. Apparently, stochastic gra-
dient descent with large learning rates prefers, among the
states of a certain energy, those with highly correlated
hidden unit vectors.

In summary, we have presented an analytic description
of learning in large soft–committee machines by means of
a replica symmetric treatment of the corresponding Gibbs
ensemble. A characteristic feature of this model is the ex-
istence of a first order phase transition from poor to good
generalization at a temperature dependent, critical size of
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Fig. 2. Stochastic backpropagation in a system with N = 150 and K = 10 at α = P/(KN) = 5. Dots represent values found
in plateau states of single runs, see the description in the text. Left panel: Solid lines show εg vs. εt as obtained from the Gibbs
ensemble by eliminating β and disregarding stability criteria. The dots display the data pairs observed in simulations with
learning rates between η = 0.1 and 4.0. Right panel: εg as found in plateau states as a function of the learning rate η. Note
that for η>̃2, εg can deviate significantly from the prediction. These results contribute to the set of points clearly above the
horizontal line in the left panel. The generalization error increases drastically for η>̃5 (not shown in the left panel).

the training set. In the limit of error free training (β →∞)
the transition is to perfect generalization and occurs at
α = 1.

We expect our results to be relevant for a large class of
practical algorithms which do not favor particular network
configurations among those of equal training error. Sim-
ulations of learning by stochastic gradient descent with
sufficiently small but finite learning rates show qualita-
tive and quantitative agreement of plateau states with the
theoretical predictions. This indicates that the considered
training procedure provides network configurations with
a purely energy dependent probability. The latter feature
is lost if the learning rate is too large.

We will provide a more detailed study of stochastic
backpropagation in a forthcoming publication. Future re-
search will furthermore address learning from noisy exam-
ples, unrealizable rules, and the training of networks with
a finite number of hidden units.

We thank G. Reents and E. Schlösser for stimulating dis-
cussions and a critical reading of the manuscript. This work
was supported under the British-German ARC program by
the British Council (project 1037) and the DAAD (project
9818105).

Appendix

We want to calculate a volume of the form

V (Q) =

∫
dJδ(NQ− J>J)

=

∫
dJ

n∏
a,b=1(a≤b)

δ
(
NQab − Ja · Jb

)
(A.1)

where Q is a symmetric, positive definite (n, n)-matrix of
overlaps and J is the (N,n)-matrix which is composed of

the n vectors Ja ∈ IRN .

For a suitable orthogonal (n, n)-matrix o and a diago-
nal (n, n)-matrix D one can write Q as Q = o>DDo. We
now apply the linear transformation J→ JDo to the above
integral. Its determinant is det DN and we obtain

V (Q) =

∫
dJδ(o>D(N1− J>J)Do) det DN . (A.2)

The Fourier representation of the δ-function yields

δ(o>D(N1− J>J)Do) =

Cn

∫
dQ̂ exp

(
i Tr

[
Q̂o>D(N1− J>J)Do

])
. (A.3)

The integration runs over symmetric (n, n)-matrices and
Cn = (2π)−n(n+1)/22n(n−1)/2, where the second factor
arises from the fact that the off-diagonal elements are
counted twice in the trace. Using

Tr
[
Q̂o>D(N1− J>J)Do

]
= Tr

[
DoQ̂o>D(N1− J>J)

]

and transforming Q̂ via Q̂→ o>D−1Q̂D−1o yields

δ(o>D(N1− J>JDo) = Cn det D−n−1

×

∫
dQ̂ exp

(
iTr
[

Q̂(N1−J>J)
]
)
)

= Cn det D−n−1δ(N1− J>J)

(A.4)

and thus V (Q) = det DN−n−1V (N1). Now V (N1) is just
a normalization constant and of course det D2 = det Q.
Hence, in the limit N → ∞ with n of order one, one
obtains

1

N
lnV (Q) =

1

2
ln det Q +O(1).
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The case where one considers an additional (N,m)-
Matrix B of m teacher vectors and wants to evaluate∫

dJδ(NQ− J>J)δ(NR− J>B) reduces to the above con-
sideration by noting that the integral will not depend on
the choice of B, as long as the matrix of teacher overlaps
T = B>B/N is held fixed. Thus, one may in addition in-
tegrate over all B which have correlation matrix T.

For the system ofK teacher vectors and nK replicated
students we define the (n + 1)K–dimensional square ma-
trix of overlaps

C =

(
Q R
R> T.

)
for which the above result yields equation (9).
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